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Abstract

This communication is concerned with torsional vibrations of an elastic bar of given length and torsional
rigidity to which several discs are attached. For fixed–free and fixed–fixed cases, formulas for the sums of
the squared reciprocal eigenfrequencies of the vibrational system are established.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The interesting paper [1] is devoted to the plane motion of a multiple pendulum consisting of a
massless inextensible string with a number of concentrated masses attached to it. Braun has
shown on the basis of the Vieta’s trace theorem, that, for a pendulum of given total length, the
sum of the squared reciprocal eigenfrequencies of small oscillations does not depend on the
distribution of the masses along the string. He has further shown for the special case of a
pendulum with equal and uniformly spaced masses, this statement is related to the zeros of the
Laguerre polynomials.
In a recent paper [2], Braun and his co-author considered plane oscillations of a chain

consisting of an elastic spring with concentrated mass points attached to it. It is shown that the
sum of squared reciprocal eigenfrequencies does not depend on the number and distribution of the
attached masses. In case of a chain with a free end the sum depends only on the total mass and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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location of the center of mass. In case of a chain with both ends fixed, the sum depends
additionally on the radius of inertia of the system with respect to its center of the mass.
The present note is concerned with the extension and application of the theory in Ref. [2] to

torsionally vibrating elastic uniform bars. Although it is reasonable to expect that obtaining the
corresponding results for the torsional counterparts is straightforward, it was not so easy.
Actually, the key point in Ref. [2] is to obtain the inverse of the stiffness matrix in closed form and
to formulate the so called dynamical matrix. Due to the fact that Ref. [2] is written in a very
compressed style on two pages, it was only possible to get further information on the
corresponding inverse via a private communication with its author.
It is worth noting that already Biezeno and Grammel [3] have considered the sum of the n

squared reciprocal eigenfrequencies in the case of rotational vibrations and showed that these
sums are identical if taken for a single shaft with n discs and for n shafts each with a single disc in
appropriate position. Although it is acknowledged that this is different from the presentation
here, there is same correlation which justifies the mention of this classical reference book.
It must be stated that expressions obtained here cannot be interpreted physically as in Ref. [2]

because the notion of the center of mass is not meaningful for torsionally vibrating bar-disc
systems.
Two series occurring in Ref. [2] are encountered here as well. But, unlike there, in the present

study, their sums are also verified mathematically.
It is hoped that the expressions derived and written in a reader-friendly style could be of some

help especially to design engineers working on eigencharacteristics of torsionally vibrating
systems.
2. Theory

2.1. Uniform, fixed–free torsional system with n discs

The system considered first in this study is shown in Fig. 1. It consist of a uniform, fixed–free
torsional bar of length L and torsional rigidity GJ̄, carrying n discs of mass moment of inertia Ji
L 

L1 L2 Ln

L1 

L2  

Ln-1

Ln = L

k1 k2 kn

.  .  .  . J1 J2 Jn-1

Jn

Fig. 1. Uniform, fixed–free torsional bar carrying n discs.
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ði ¼ 1; . . . ; nÞ. The interest here lies in establishing a relationship between the n eigenfrequencies
of this torsional vibrational system.
The equivalent torsional stiffness coefficient of the bare bar is

k ¼
GJ̄

L
, (1)

whereas the stiffness coefficient of the ith part of the bar can be shown to be

ki ¼
L

Li

k. (2)

Equations of motion of the system can be written in the classical form

M €uðtÞ þ KuðtÞ ¼ 0, (3)

where the coordinate vector u(t) is composed of the n torsional displacements ji(t) of the n discs.
The mass matrix is simply

M ¼ diagðJiÞ ði ¼ 1; . . . ; nÞ, (4)

whereas the stiffness matrix K has the form

K ¼ kL
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66666666666666666664

3
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(5)

The assumption of harmonic solutions uðtÞ ¼ ū sin on;it leads to the standard eigenvalue
problem

ðA� lIÞū ¼ 0, (6)

where

A ¼ K�1M; l ¼ 1=o2
n;i (7)

and I denotes the n� n unit matrix. The matrix A is referred to as dynamical matrix [4].
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The essential point for the developments below is that the stiffness matrix K can be inverted in
closed form. It can be shown [5] that its inverse is

K�1 ¼
1

kL

L̄1 L̄1 L̄1 � � � L̄1 L̄1

L̄1 L̄2 L̄2 � � � L̄2 L̄2

L̄1 L̄2 L̄3 � � � L̄3 L̄3

..

. ..
. ..

. ..
. ..

.

L̄1 L̄2 L̄3 � � � L̄n�1 L̄n�1

L̄1 L̄2 L̄3 � � � L̄n�1 L̄n

2
66666666664

3
77777777775
, (8)

where

L̄i ¼
Xi

k¼1

Lk ði ¼ 1; . . . ; nÞ (9)

are introduced, denoting aggregated lengths of various parts of the bar, measured from the fixed
end.
Substitution of Eqs. (4) and (8) into Eq. (7) yields the dynamical matrix as

A ¼
1

kL

J1L̄1 J2L̄1 J3L̄1 � � � Jn�1L̄1 JnL̄1

J1L̄1 J2L̄2 J3L̄2 � � � Jn�1L̄2 JnL̄2

J1L̄1 J2L̄2 J3L̄3 � � � Jn�1L̄3 JnL̄3

..

. ..
. ..

. ..
. ..

.

J1L̄1 J2L̄2 J3L̄3 � � � Jn�1L̄n�1 JnL̄n�1

J1L̄1 J2L̄2 J3L̄3 � � � Jn�1L̄n�1 JnL̄n

2
66666666664

3
77777777775
. (10)

According to the Vieta’s trace theorem [6], the trace of the matrix A is equal to the sum of its
eigenvalues:

Xn

i¼1

li ¼
Xn

i¼1

1

o2
n;i

¼
1

kL

Xn

i¼1

JiL̄i. (11)

Hence, Eq. (11) represents the relationship desired between the n eigenfrequencies of the system
in Fig. 1.
2.2. Uniform, fixed–free torsional system with n equal discs attached at equal spacing

For the special case of a uniform n-disc bar, i.e., Li ¼ L=n, Ji ¼ J as shown in Fig. 2, the sum
on the right side of Eq. (11) reduces to

Xn

i¼1

JiL̄i ¼
L

n
J

nðnþ 1Þ

2
. (12)



ARTICLE IN PRESS

L 

L/n L/n

.  .  .  . J J J J

L/n

Fig. 2. Uniform, fixed–free torsional bar carrying n equal discs at equidistant spacing.
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Hence, Eq. (11) yields after some rearrangements,

Xn

i¼1

1

o2
n;i

¼
1

2
1þ

1

n

� �
IL2

GJ̄
¼

nðnþ 1Þ

2

J

nGJ̄=L
, (13)

where IL ¼ nJ denotes the total mass moment of inertia of the discs.
By increasing the number of discs of the system to infinity in such a way that the total mass

moment of inertia is kept constant, the system is turned into a homogenous torsional bar of mass
moment IL and torsional stiffness GJ̄. Hence, Eq. (13) yields

X1
i¼1

1

o2
1;i

¼
1

2

IL2

GJ̄
; (14)

where oN,i denotes the ith eigenfrequency of the system for n approaching infinity.
It is a known fact that the eigenfrequencies of uniform oscillators can be given explicitly [7]. For

the uniform n-disc torsional system in Fig. 2 one obtains

on;i ¼ 2n sin
2i � 1

2nþ 1

p
2

� � ffiffiffiffiffiffiffi
GJ̄

IL2

s
. (15)

For numerical evaluations in a following section, it is suitable to rewrite the above formula also as

on;i ¼ 2 sin
2i � 1

2nþ 1

p
2

� � ffiffiffiffiffiffiffiffiffi
nGJ̄

JL

s
, (16)

where the expression under the square root symbol represents the squared eigenfrequency of a
torsional auxiliary system composed of only one part of the bar of length L=n with a disc J at its
free end.
Substitution of the eigenfrequency expression above into Eq. (13) leads to

Xn

i¼1

1

sin2 ð2i � 1Þ=ð2nþ 1Þ
� �

ðp=2Þ
� � ¼ 2nðnþ 1Þ. (17)

This result, occurring in Ref. [2] as well, which is obtained on the basis of the physical
considerations can also be validated mathematically [8]. This is done in the appendix.
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It is not difficult to show that expression (15) yields, for n going to infinity

o1;i ¼ lim
n!1

on;i ¼ i �
1

2

� �
p

ffiffiffiffiffiffiffi
GJ̄

IL2

s
ði ¼ 1; 2; . . .Þ, (18)

which is nothing else but the ith eigenfrequency of a uniform torsional bar [4]. If this expression is
put into the left side of Eq. (14), X1

i¼1

1

o2
1;i

¼
4IL2

p2GJ̄

X1
i¼1

1

ð2i � 1Þ2
(19)

is obtained which can also be expressed asX1
i¼1

1

o2
1;i

¼
4IL2

p2GJ̄

X1
i¼0

1

ð2i þ 1Þ2
: (20)

If, on the other side, it is considered that the sum of the series on the right side is given in
handbooks [9] as p2=8, one sees that Eq. (14) is verified.

2.3. Uniform, fixed–fixed torsional system with n discs

The torsional system to be dealt with in this section is shown in Fig. 3 which is essentially the
same as in Fig. 1 except that the torsional bar is fixed at both ends. Here, in addition to Li and L̄i,
the aggregated lengths ¯̄Li are defined which represent the distances of the individual discs from the
right fixed end:

¯̄Li ¼ L� L̄i. (21)

The mass and stiffness matrices M and K given in Eqs. (4) and (5) remain the same except
that the (n, n)-element of K has the additive term 1=Lnþ1. The inverse of the stiffness matrix
Ln+1 

Jn

Ln

Ln

Ln+1 = L

L1 L2

L2

L2

L1

Ln-1

Ln-1

Ln

k1 k2 kn

.  .  .  . J1 J2 Jn-1

kn+1

L1

L

Fig. 3. Uniform, fixed–fixed torsional bar carrying n discs.
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is now [5]

K�1 ¼
1

kL2

L̄1
¯̄L1 L̄1

¯̄L2 L̄1
¯̄L3 � � � L̄1

¯̄Ln�1 L̄1
¯̄Ln

L̄1
¯̄L2 L̄2

¯̄L2 L̄2
¯̄L3 � � � L̄2

¯̄Ln�1 L̄2
¯̄Ln

L̄1
¯̄L3 L̄2

¯̄L3 L̄3
¯̄L3 � � � L̄3

¯̄Ln�1 L̄3
¯̄Ln

..

. ..
. ..

. ..
. ..

.

L̄1
¯̄Ln�1 L̄2

¯̄Ln�1 L̄3
¯̄Ln�1 � � � L̄n�1

¯̄Ln�1 L̄n�1
¯̄Ln

L̄1
¯̄Ln L̄2

¯̄Ln L̄3
¯̄Ln � � � L̄n�1

¯̄Ln L̄n
¯̄Ln

2
66666666664

3
77777777775
, (22)

which yields the dynamic matrix

A ¼
1

kL2

J1L̄1
¯̄L1 J2L̄1

¯̄L2 J3L̄1
¯̄L3 � � � Jn�1L̄1

¯̄Ln�1 JnL̄1
¯̄Ln

J1L̄1
¯̄L2 J2L̄2

¯̄L2 J3L̄2
¯̄L3 � � � Jn�1L̄2

¯̄Ln�1 JnL̄2
¯̄Ln

J1L̄1
¯̄L3 J2L̄2

¯̄L3 J3L̄3
¯̄L3 � � � Jn�1L̄3

¯̄Ln�1 JnL̄3
¯̄Ln

..

. ..
. ..

. ..
. ..

.

J1L̄1
¯̄Ln�1 J2L̄2

¯̄Ln�1 J3L̄3
¯̄Ln�1 � � � Jn�1L̄n�1

¯̄Ln�1 JnL̄n�1
¯̄Ln

J1L̄1
¯̄Ln J2L̄2

¯̄Ln J3L̄3
¯̄Ln � � � Jn�1L̄n�1

¯̄Ln JnL̄n
¯̄Ln

2
66666666664

3
77777777775
. (23)

The trace theorem leads now to Xn

i¼1

1

o2
n;i

¼
1

kL2

Xn

i¼1

JiL̄i
¯̄Li; (24)

which can be brought into the following form:Xn

i¼1

1

o2
n;i

¼
1

kL

Xn

i¼1

JiL̄i �
1

kL2

Xn

i¼1

JiL̄
2
i : (25)

2.4. Uniform, fixed–fixed torsional system with n equal discs attached at equal spacing

For the special case of a uniform n disc-bar torsional system as shown in Fig. 4. i.e.,
Li ¼ L=ðnþ 1Þ, Ji ¼ J, it can be shown that, after some rearrangements, Eq. (25) simplifies to:Xn

i¼1

1

o2
n;i

¼
1

6

nþ 2

nþ 1

� �
IL2

GJ̄
¼

nðnþ 2Þ

6

J

ðnþ 1ÞGJ̄=L
. (26)
J.  .  .  . J J J

L/(n+1) L/(n+1)L/(n+1)

L

L/(n+1)

Fig. 4. Uniform, fixed–fixed torsional bar carrying n equal discs at equidistant spacing.
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For the limit n!1, Eq. (26) reduces to

X1
i¼1

1

o2
1;i

¼
1

6

IL2

GJ̄
, (27)

which represents a property of the eigenfrequencies of a uniform torsional bar, fixed at the both
ends.
The eigenfrequencies of the uniform n-disc torsional system in Fig. 4 can be given explicitly

as [10]

on;i ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
sin

i

nþ 1

p
2

� � ffiffiffiffiffiffiffi
GJ̄

IL2

s
. (28)

For numerical evaluations in the next section, it is appropriate to rewrite Eq. (28) also as

on;i ¼ 2 sin
i

nþ 1

p
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞGJ̄

JL

s
. (29)

Here, the square root represents the eigenfrequency of a torsional subsystem consisting of only
one part of the bar of length L=ðnþ 1Þ with a disc J at its free end.
Substitution of Eq. (28) into the left side of Eq. (26) gives

Xn

i¼1

1

sin2 ½i=ðnþ 1�ðp=2Þ
� � ¼ 2

3
nðnþ 2Þ. (30)

The mathematical validation of this interesting result [8], reported also in Ref. [2] is given in the
appendix.
Expression (28) yields in the limit:

o1;i ¼ lim
n!1

on;i ¼ ip

ffiffiffiffiffiffiffi
GJ̄

IL2

s
, (31)

which represents the ith eigenfrequency of a uniform torsional bar [4].
Substitution of the last expression into the left side of Eq. (27) results in

X1
i¼1

1

o2
1;i

¼
IL2

p2GJ̄

X1
i¼1

1

i2
. (32)

The sum of the series on the right side of the above equation is given in handbooks [9] as p2=6.
This in turn, verifies Eq. (27) in a direct manner.
3. Numerical applications

Although the results obtained are clear and easy to apply, it is instructive to consider two simple
examples, verifying numerically the expressions established.
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Example 1. In the first example, n ¼ 5 discs are considered in the torsional system in Fig. 2. All
discs have the mass moment of inertia J and each of the five parts of the bar has the torsional
stiffness coefficient 5GJ̄=L such that the whole bar has the stiffness coefficient GJ̄=L.

The nondimensionalized squares of the eigenfrequencies of the system obtained via Eq. (16) are:
0.08101405,
0.69027853,
1.71537032,
2.83083003,
3.68250707.
The sum of the inverses of these five numbers gives 15, corresponding to 5ð5þ 1Þ=2 in
accordance with Eq. (13).

Example 2. The second example considers n ¼ 5 discs in the torsional system given in Fig. 4.
Again, all discs have the mass moment of inertia J and each of the six parts of the bar has the
torsional stiffness coefficient 6GJ̄=L such that the whole bar has the stiffness coefficient GJ̄=L.

The nondimensionalized squares of the eigenfrequencies of the system obtained via Eq. (29) are:
0.26794919,
1.00000000,
2.00000000,
3.00000000,
3.73205081.
The sum of the inverses of these five numbers yields 5.83333333 which corresponds to 5ð5þ
2Þ=6 in accordance with Eq. (26).
4. Conclusions

This note is concerned with torsional vibrations of an elastic bar of given length L and torsional
rigidity GJ̄ to which n discs are attached. For fixed–free and fixed–fixed cases, formulas for the
sums of the squared reciprocal eigenfrequencies of the vibrational system are established. Results
are also specialized to uniform torsional oscillators with equal discs at equidistant spacing. It is
hoped that the expressions derived could be of some help to design engineers working on torsional
vibrations of elastic bars.
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Appendix

From Ref. [11], one has the following formula:

Xðn�3Þ=2
k¼0

1

sin2 ½ð2k þ 1Þ=2n�p
� � ¼ n2

2
þ
1

4
ð�1Þn � 1½ �

for an odd integer n. The proof of the above expression can be found essentially in Ref. [12].
Substitution of

n ¼ 2mþ 1,

where m represents an arbitrary positive integer, yields

Xm�1
k¼0

1

sin2 ½ð2k þ 1Þ=ð2ð2mþ 1ÞÞ�p
� � ¼ 2mðmþ 1Þ.

This result can be arranged asXm

k¼1

1

sin2 ½ð2k � 1Þ=ð2mþ 1Þ�ðp=2Þ
� � ¼ 2mðmþ 1Þ,

which corresponds to Eq. (17).
From Ref. [11], one also has the following formula:

Xðn�2Þ=2
k¼1

1

sin2 kp=n
� � ¼ 1

6
ðn2 � 1Þ �

1

4
1þ ð�1Þn½ �

for an even integer n. The proof of the above formula can essentially be found in Ref. [12].
Substitution of

n ¼ 2mþ 2,

where m represents an arbitrary positive integer, yieldsXm

k¼1

1

sin2 kp=ð2mþ 2Þ
� � ¼ 2m

3
ðmþ 2Þ.

This result can be arranged asXm

k¼1

1

sin2 ½k=ðmþ 1Þ�ðp=2Þ
� � ¼ 2

3
mðmþ 2Þ,

which corresponds to Eq. (30).
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